Reading List

Papers indicated by the solemn emoticon (-_-) are required readings. You will write a paragraph about these readings.

Papers indicated by the zen-like emoticon (^_^) are available for presentation.


Week 2

Anatomy of an HRI Paper (Presented by Instructor)

Probability and Inference

Russell & Norvig (2020). Artificial Intelligence: a Modern Approach (4th ed.). Prentice Hall. Chapter 12.


Week 3

Intention Recognition I

Bayesian Networks

  • Russell & Norvig (2020). Artificial Intelligence: a Modern Approach (4th ed.). Prentice Hall. Chapter 13.

Markov Models + HMMs 

  • Russell & Norvig (2020). Artificial Intelligence: a Modern Approach (4th ed.). Prentice Hall. Chapter 14

Week 4

Intention Recognition II

  • Inferring Human Intent and Predicting Human Action in Human–Robot Collaboration. Hoffman, Bhattacharjee, and Nikolaidis, Annual Review of Control, Robotics, and Autonomous Systems. Vol 7:73-95, 2024. Abstract and Section 1, 5, & 6. (-_-)
  • Xu & Dudek (2015). Optimo: Online probabilistic trust inference model for asymmetric human-robot collaborations. In Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction (HRI’15), pp. 221-228. [PDF(^_^)
  • Choi, Jawed, & Joo (2022). Preemptive Motion Planning for Human-to-Robot Indirect Placement Handovers. In 2022 International Conference on Robotics and Automation (ICRA), pp. 4743–4749. [PDF(^_^)

Filtering

  • Russell & Norvig (2009). Artificial Intelligence: a Modern Approach (3rd ed.). Prentice Hall. Chapters 15.4  on Kalman Filters and 15.5 (specifically 15.5.3) on Particle Filters
  • Thrun, Burgard, & Fox (2005). Probabilistic robotics. MIT Press. Chapters 2-4.

Week 5

Social Navigation

Decision-Making and MDPs

  • Russell & Norvig (2009). Artificial Intelligence: a Modern Approach (3rd ed.). Prentice Hall. Chapters 16.1-3, 17.
  • Sutton & Barto (2018). Reinforcement Learning: An Introduction. MIT Press. Chapter 3. Worth reading Chapters 1-2 as well.
  • Optional: Thrun, Burgard, & Fox (2005). Probabilistic robotics. MIT Press. Chapter 14.

Week 6

Legibility

Solving MDPs

  • Russell & Norvig (2009). Artificial Intelligence: a Modern Approach (3rd ed.). Prentice Hall. Chapter 17.
  • Sutton & Barto (2018). Reinforcement Learning: An Introduction. MIT Press. Chapter 4.
  • Optional: Thrun, Burgard, & Fox (2005). Probabilistic robotics. MIT Press. Chapter 14.

Week 7

Human-Robot Collaboration


Week 8

Nonverbal Behavior: Gestures

Reinforcement Learning I: Monte Carlo Methods and TD Learning

  • Artificial Intelligence: a Modern Approach. Russell & Norvig, Prentice Hall (2020, 4th ed.) Chapter 22
  • Sutton & Barto (2018). Reinforcement Learning: An Introduction. MIT Press. Chapter 5-6.4

Week 9

Nonverbal Behavior: Gaze

Reinforcement Learning II: Q-Learning and Bootstrapping

  • Sutton & Barto (2018). Reinforcement Learning: An Introduction. MIT Press. Chapter 6.5-7.

Week 10

Learning with and from Humans


Spring Break!

Week 12

Designing Experiments I


Week 13

Designing Experiments II

And that’s not all! There is an additional categorized HRI reading list for motivated students.

Save